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Abstract. Locally finite, congruence meet-semidistributive varieties have been char-

acterized by numerous Mal’cev conditions and, recently, by two strong Mal’cev con-

ditions. We provide three new strong Mal’cev characterizations and a new Mal’cev
characterization each of which improves the known ones in some way.

1. Introduction

The various conditions which are equivalent to congruence meet-semidis-

tributivity in locally finite varieties of algebras have been explored in several

previous papers and books [5], [7], [11], [15], [20], [13]. The reason for this ac-

tivity is that congruence meet-semidistributive varieties are a very general, and

yet well behaved class of varieties. For instance, this condition is equivalent to

congruence neutrality [11] and [15]; in locally finite varieties it is characterized

by omitting tame congruence theory types 1 and 2 [7]; the Park’s conjecture

is true in congruence meet-semidistributive varieties [20], see also [12]; it char-

acterizes the algebraic duals of the finite relational structures A such that the

constraint satisfaction problem with template A can be accurately solved by

using only the local consistency checking [14], [2], see also [1].

We are concerned in this paper with an optimal strong Mal’cev characteri-

zation for congruence meet-semidistributivity. Siggers proved in [19] that the

weaker property, having a Taylor term (characterized in locally finite varieties

by omitting type 1) is a strong Mal’cev property, when restricted to locally

finite varieties. The Siggers’ result was a big surprise at the time of publica-

tion and spurred an investigation of what other properties which were hitherto

known to have a Mal’cev characterization would have a strong Mal’cev char-

acterization in locally finite varieties. Congruence meet-semidistributivity was

proved to be a strong Mal’cev property in the case of locally finite varieties

in [13], while many other natural properties were proved not to have a strong

Mal’cev characterization in the same paper. The paper [10] settled the question

of optimal (syntactically simplest) strong Mal’cev characterization of having a
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Taylor term (= omitting type 1) in locally finite varieties. The paper [8] man-

aged to prove that there are no strong Mal’cev characterizations of congruence

meet-semidistributive locally finite varieties in the language with at most one

ternary operation and all other operations with arities less than 3. In the case

of conditions with two ternary operations, the paper [8] isolates one candi-

date condition and proves that every strong Mal’cev characterization with two

ternary operations of congruence meet-semidistributivity in locally finite vari-

eties must imply this one. In the present paper we prove that that condition

isolated by [8] indeed does characterize congruence meet-semidistributivity in

locally finite varieties. We also find a strong Mal’cev characterization in the

language of one operation of arity 4. The two strong Mal’cev conditions we

find are, thus, syntactically optimal.

Our paper is organized as follows: In Section 2, we give a list of definitions

which will be used, beyond the classical universal algebra definitions and re-

sults which we assume the reader to be familiar with. Those readers who are

not familiar with them are advised to check out the textbooks [4], [18] and/or

[3]. To follow all proofs of cited results, the reader needs some knowledge of

tame congruence theory developed in [7] and commutator theory in [6], but no

knowledge of either is needed to follow our arguments if the reader is content to

trust the cited theorems. We continue Section 2 with definitions and a review

of the constraint satisfaction problem terminology and results, particularly the

main result of [1], which will be the main tool used to prove the harder direc-

tion of our two Mal’cev characterizations. In the same section we recall a result

of commutator theory from [9] which we will use to prove the easier direction

(that the Mal’cev condition implies congruence meet-semidistributivity) in our

results. We conclude Section 2 with definitions and review of relevant results

about Mal’cev conditions which will be used in the paper.

In Section 3 we prove the main theorem of this paper. It gives a strong

Mal’cev characterization of locally finite varieties in the language which con-

sists of one operation of arity 4. This is an optimal strong Mal’cev charac-

terization of congruence meet-semidistributive locally finite varieties, as per

terminology of [10]. The other optimal language for such a strong Mal’cev

characterization, namely the language which consists of two ternary operation

symbols is also realized, which is a corollary of the main theorem.

We conclude the paper with a list of topics for further research in Section

4, speculating on directions in which our results could be further improved.

Several partial results in those directions are proved.

2. Definitions and background

We begin by defining the property this paper chiefly investigates and at-

tempts to characterize.
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Definition 2.1. An algebra is congruence meet-semidistributive if for any

congruences α, β, γ ∈ Con A, the following implication holds:

α ∧ β = α ∧ γ ⇒ α ∧ β = α ∧ (β ∨ γ).

A variety V is congruence meet-semidistributive if every algebra in V is con-

gruence meet-semidistributive.

We turn to definitions of the constraint satisfaction problem and a (2, 3)-

minimal instance of it. We follow [1] as we will use the main result of that

paper a lot. The definition we give below is Definition 3.1 of [1]:

Definition 2.2. An instance of the constraint satisfaction problem (CSP) is

a triple (V ;A; C) with

• V a nonempty, finite set of variables,

• A a nonempty, finite domain,

• C a finite nonempty set of constraints, where each constraint is a subset C

of AW . Here W is a subset of V called the scope of C and the cardinality

|W | of W is referred to as the arity of C.

An instance is trivial if it contains the empty constraint. The instance

(V ;A; C) has a solution, that is, a function f : V → A such that, for each

constraint C ∈ C, such that the scope of C is W ⊆ V , the restriction f �W is

in C. Next we define a 2-consistent and a (2, 3)-minimal instance:

Definition 2.3. An instance of CSP (V ;A; C) is 2-consistent, if for every

U ⊆ V such that |U | ≤ 2 and every pair of constraints C,D ∈ C such that

U is contained in the scopes of both C and D, the restrictions C �U= D �U .

An instance of CSP (V ;A; C) is (2, 3)-minimal if it is 2-consistent and every at

most 3-element subset of V is contained in the scope of some constraint in C.

In order to make our proofs easier to read we introduce a convention that the

elements of AW (mappings from W to A) are written as vector columns. This

allows us to see better how to apply an operation which acts coordinatewise

to several such vectors. When we describe the constraint C ⊆ AW , we linearly

order the elements of W = {xi1 , . . . , xik}. Then we write ρi1,...,ik = R, for

some previously fixed R ⊆ A|W |, which means that the uppermost coordinate

of the vector column in R is the image of xi1 , below it the image of xi1 , and

so on. In some cases, to save space we will use the transpose of the vector

column, which will be denoted by [a1, . . . , ak]T .

Definition 2.4. Let A = 〈A; Γ〉 be a relational structure. An instance of the

constraint satisfaction problem CSP (A) is any instance of the CSP (V ;D; C)
such that for each constraint C ∈ C, the relation C is equal to a permutation

of coordinates C ′ ∈ Γ. The structure A is called the template of CSP (A).

We silently assume that all Γ contain the equality relation (to allow using

the relations obtained by identification of variables).
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Let A be an algebra. When Γ ⊆ SPfin(A), then we say that CSP (〈A; Γ〉)
is compatible with A. The following result (Corollary 6.5 of [1]) is the one

that has as a consequence the main theorem of [1]:

Theorem 2.5. Let A be an idempotent finite algebra which generates a con-

gruence meet-semidistributive variety. Then for every CSP (〈A; Γ〉) which is

compatible with A, every (2, 3)-minimal instance of CSP (〈A; Γ〉) which is not

trivial has a solution.

By a strong Mal’cev condition we mean a finite set of identities in some

language. Informally, a strong Mal’cev condition is realized in an algebra A

(or variety V) if there is a way to interpret the function symbols appearing

in the condition as term operations of A (or V) so that the identities in the

Mal’cev condition become true equations in A (or V). A Mal’cev condition is

a sequence {Cn : n ∈ ω} of strong Mal’cev conditions such that any variety

which realizes Cn must also realize Cn+1 for all n ∈ ω. We say that the variety

V realizes the Mal’cev condition {Cn : n ∈ ω} if there exists an n ∈ ω such

that V realizes Cn.

We recall the following characterization of congruence meet-semidistributi-

vity, proved in [9], Theorem 8.1., (1)⇔ (10).

Theorem 2.6. Let V be a variety. V is congruence meet-semidistributive iff V
satisfies an idempotent Mal’cev condition which fails in any variety of modules.

We give two Mal’cev conditions and two strong Mal’cev conditions which

will be of further use to us:

We say that a variety has Jónsson terms if there exists n ≥ 2 such that V
realizes the strong condition CD(n). CD(n) is in the language {d0, d1, . . . , dn}
consisting of ternary symbols, and consists of identities

d0(x, y, z) ≈ x,
di(x, y, x) ≈ x for all 0 ≤ i ≤ n,

di(x, y, y) ≈ di+1(x, y, y) for all even i such that 0 ≤ i ≤ n,
di(x, x, y) ≈ di+1(x, x, y) for all odd i such that 0 ≤ i ≤ n,

dn(x, y, z) ≈ z.

We say that a variety has a weak near-unanimity term if there exists n ≥
3 such that V realizes the strong condition WNU(n). WNU(n) is in the

language {w}, the arity is ar(w) = n, and consists of identities

w(x, x, . . . , x) ≈ x,
w(y, x, x, . . . , x) ≈ w(x, y, x, . . . , x) ≈ . . . ≈ w(x, x, . . . , x, y).

It was proved in the 1960s by Jónsson that a variety is congruence dis-

tributive iff it realizes CD(n) for some n ≥ 2. This kind of equivalence is

usually called a Mal’cev characterization of some property. In [17] it was

proved that any locally finite variety V is congruence meet-semidistributive iff
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V realizes the strong Mal’cev conditions WNU(n) for all but finitely many

n ∈ ω \ {0, 1, 2}. This was a Mal’cev characterization of congruence meet-

semidistributivity within the class of locally finite varieties.

Various Mal’cev conditions may be equivalent when restricted to locally

finite varieties, but inequivalent in general. We can measure the syntactic

strength of these conditions, namely their position in the lattice of inter-

pretability types. This is a preorder which is induced by the relation ”condi-

tion Σ1 is realized in the variety of all models of condition Σ2”. An equivalent

perspective at this preorder is proved in the following proposition.

Proposition 2.7. Let Σ1 and Σ2 be strong Mal’cev conditions. The following

statements are equivalent:

• Any variety which realizes Σ1 must also realize Σ2.

• Σ1 is realized in the variety V = Mod(Σ2).

Proof. One direction follows since the variety V (which treats Σ2 as its base of

equations) realizes Σ2, while the other direction follows since the composition

of the realization of condition Σ1 into Mod(Σ2) with the realization of Σ2 in

some V is also a realization of Σ1. �

We will write Σ2 � Σ1 in the case when either condition of the above Propo-

sition is satisfied and say that the strong Mal’cev conditition Σ1 is stronger

than the condition Σ2. When Σ1 � Σ2 and Σ2 � Σ1, we say that those two

strong Mal’cev conditions are equivalent and write Σ2 ∼ Σ1.

However, when one restricts the scope of varieties one cares about, one gets

a lot of identification. We write Σ2 �lf Σ1, meaning that ”any locally finite

variety which realizes Σ1 must also realize Σ2”. The equivalence induced by

the preorder �lf is denoted by ∼lf . Often ∼-inequivalent conditions become

equivalent with respect to ∼lf .

Now we state the strong Mal’cev characterization of congruence meet-semi-

distributivity in locally finite varieties which was proved in [13]:

Theorem 2.8 (Theorem 2.8 of [13]). Let V be a locally finite variety. V is

congruence meet-semidistributive iff V realizes the strong Mal’cev condition

given by:

p(x, x, x) ≈ x ≈ w(x, x, x, x),

p(x, x, y) ≈ p(x, y, x) ≈ p(y, x, x) ≈ w(x, x, x, y)

≈ w(x, x, y, x) ≈ w(x, y, x, x) ≈ w(y, x, x, x).

(SM 1)

Here is an easier way to remember the above condition: p is a ternary weak

near-unanimity, w is a 4-ary weak near-unanimity and t(x, x, y) ≈ w(x, x, x, y).

Another strong Mal’cev characterization of congruence meet-semidistribu-

tivity, due to Janko and Maróti, is a direct corollary of Theorem 2.8.
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Corollary 2.9. Let V be a locally finite variety. V is congruence meet-

semidistributive iff V realizes the strong Mal’cev condition given by:

p(x, x, x) ≈ q(x, x, x) ≈ r(x, x, x) ≈ x,
p(x, x, y) ≈ p(x, y, x) ≈ p(y, x, x) ≈ q(x, x, y)

≈ q(x, y, x) ≈ r(x, y, x) ≈ r(y, x, x),

q(x, y, y) ≈ r(x, x, y)

(SM 2)

Proof. On the one hand, if V is congruence meet-semidistributive, then from

Theorem 2.8, by taking q(x, y, z) = w(x, x, y, z) and r(x, y, z) = w(x, y, z, z),

we get that (SM 2) holds in V.

On the other hand, if the condition (SM 2) fails in any nontrivial R-module

M, as can be seen by setting p(x, y, z) = α1x+ α2y + α3z, q(x, y, z) = β1x+

β2y+β3z and r(x, y, z) = γ1x+γ2y+γ3z. Now the second string of equations

of (SM 2), by evaluating x = 0 we get that α1 = α2 = α3 = β2 = β3 = γ1 =

γ2 =: α. The final equation implies that β1 = 2α, while the first equation

(idempotence) now implies that 3α = 4α = 1, so α = 0 and 3α = 1, which

implies that 0 = 1, and so for any element x ∈ M , x = 1x = 0x = 0, so M is

trivial. �

3. Optimal strong Mal’cev characterizations of congruence meet-se-

midistributivity

Let all us define a sequence of positive integers {wn : n ≥ 1} recursively, by

w1 = 4 and wn+1 = 3(n+ 1)(2wn − 1) + 1

for all n > 0. We prove the following Ramsey-style lemma:

Lemma 3.1. If P (wn) \ {∅} is colored by ϕ in n colors (i. e. ϕ : (P (wn) \
{∅})→ {1, 2, . . . , n}), then there exist distinct subsets A1, . . . , A7 ∈ P (wn)\{∅}
such that

• A1 ∩Ai = ∅ for all i > 1;

• Ai ∩Aj = ∅ whenever 2 ≤ i ≤ 4 and j ∈ {2, 3, 4, i+ 3} \ {i};
• A2 ⊆ A6 ∩A7, A3 ⊆ A5 ∩A7 and A4 ⊆ A5 ∩A6;

• none of A5, A6, A7 is contained in any other among the seven sets and

• ϕ(A1) = ϕ(A2) = ϕ(A3) = ϕ(A4) = ϕ(A5) = ϕ(A6) = ϕ(A7).

Proof. The proof is by an induction on n. If n = 1, then w1 = 4 and we take

A1 = {0}, A2 = {1}, A3 = {2}, A4 = {3}, A5 = {2, 3}, A6 = {1, 3} and

A7 = {1, 2}.
Assume that n > 1 and that the claim is true for n − 1. Since wn =

3n · (2wn−1 − 1) + 1, without loss on generality we may assume that at least

3 · 2wn−1−1 + 1 singleton subsets of wn are colored with the color n. Select

A ⊆ wn such that |A| = 3(2wn−1 − 1), all singleton subsets of A are colored

with n, and select a ∈ wn \A such that ϕ({a}) = n.
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First we will define the order embedding ψ1 of the poset P (wn−1) into

the poset P (A) which preserves incomparability and disjointness. Thus any

family of seven subsets of P (wn−1) which satisfies the first four conditions in

the statement of the lemma maps by ψ1 into such a family of subsets of A.

For any nonempty setX ∈ P (wn−1), select τ(X) ∈ P (A) such that |τ(X)| =
3, and such that if X 6= Y and X,Y ∈ P (wn−1) are nonempty, then τ(X) ∩
τ(Y ) = ∅. Moreover, let τ(∅) = ∅. Now define ψ1(X) =

⋃
{τ(Y ) : Y ⊆ X}.

Distinct subsets of wn−1 have distinct powersets, so this is an injective map.

If X ⊆ Y ⊆ wn−1 then P (X) ⊆ P (Y ), so ψ1 is order-preserving. If X

and Y are incomparable, then X \ Y is a nonempty set, as is Y \ X, and

∅ 6= τ(X \ Y ) ⊆ ψ1(X) \ ψ1(Y ), while ∅ 6= τ(Y \ X) ⊆ ψ1(Y ) \ ψ1(X).

Finally, we show that X and Y are disjoint iff ψ1(X) and ψ1(X) are. Let

X,Y ⊆ wn−1 be disjoint. Then P (X) ∩ P (Y ) = {∅}, so ψ1(X) and ψ1(Y )

intersect in τ(∅) = ∅, i.e. ψ1(X) ∩ ψ1(Y ) = ∅. On the other hand, if X and

Y are not disjoint, then ∅ 6= τ(X ∩ Y ) ⊆ ψ1(X) ∩ ψ1(Y ). Also, note that

|A| = 3(2wn−1 − 1), so it is just big enough in size to enable the selection of all

τ(X) which are mutually disjoint three-element sets, and thus ψ1(wn−1) = A.

Let τ(X) = {b, c, d} for some ∅ ( X ⊆ wn−1. If ϕ(ψ1(X)\{b}) = ϕ(ψ1(X)\
{c}) = ϕ(ψ1(X) \ {d}) = n, then A1 = {a}, A2 = {b}, A3 = {c}, A4 = {d},
A5 = ψ1(X) \ {b}, A6 = ψ1(X) \ {c} and A7 = ψ1(X) \ {d} satisfy the

conclusion of the lemma. So we may assume that for every ∅ ( X ⊆ wn−1,

there exists x ∈ τ(X) such that ϕ(ψ1(X) \ {x}) 6= n.

Select ψ : P (wn−1) → P (A) such that ψ(∅) = ∅, while for all X such

that ∅ ( X ⊆ wn−1, ψ(X) = ψ1(X) \ {x}, where x ∈ τ(X) is such that

ϕ(ψ(X)) 6= n. We know that X ⊆ Y in P (wn−1) implies X = Y or ψ(X) ⊆
ψ1(X) ⊆

⋃
{ψ1(Z) : Z ( Y } ( ψ(Y ), so we get that ψ is an order-preserving

map between P (wn−1) and ψ(P (wn−1)). If X 6⊆ Y , then X \ Y 6= ∅, so

τ(X \ Y ) ⊆ ψ1(X) \ ψ1(Y ) and thus |ψ1(X) \ ψ1(Y )| ≥ 3. Therefore |ψ(X) \
ψ(Y )| ≥ |ψ(X) \ ψ1(Y )| ≥ |ψ1(X) \ ψ1(Y )| − 1 ≥ 2, and ψ preserves the non-

containment, so it is an order-isomorphism between P (wn−1) and ψ(P (wn−1)).

Since ψ(X)∩ψ(Y ) ⊆ ψ1(X)∩ψ1(Y ), thus X∩Y = ∅ implies ψ1(X)∩ψ1(Y ) = ∅
which in turn implies ψ(X) ∩ ψ(Y ) = ∅. On the other hand, if X ∩ Y 6= ∅,
then |ψ1(X)∩ψ1(Y )| ≥ 3, so |ψ(X)∩ψ(Y )| ≥ |ψ1(X)−ψ1(Y )| − 2 > 0. Thus

ψ(X) and ψ(Y ) are disjoint iff X and Y are.

Now we define the coloring ϕ1 of P (wn−1) \ {∅} as ϕ1(X) = ϕ(ψ(X))

whenever ∅ 6= X ⊆ wn−1. By the inductive assumption, there exist subsets

B1, . . . , B7 ⊆ wn−1 such that they satisfy the conclusion of the lemma with

respect to the coloring ϕ1. We note that all Bi must be nonempty subsets of

wn−1 by the first three conditions. Thus Ai := ψ(Bi), for 1 ≤ i ≤ 7, satisfy

the conclusion of the lemma with respect to ϕ, the first four conditions since

we proved that ψ is an order-isomorphism between P (wn−1) and ψ(P (wn−1))

such that ψ and ψ−1 preserve disjointness. �
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Now we apply Lemma 3.1 to prove a strong Mal’cev characterization of

congruence meet-semidistributivity:

Theorem 3.2. Let V be a variety. If V is locally finite and congruence meet-

semidistributive, then V realizes the strong Mal’cev condition (SM 3) given

by
t(x, x, x, x) ≈ x
t(y, x, x, x) ≈ t(x, y, x, x) ≈ t(x, x, y, x) ≈
t(x, x, x, y) ≈ t(y, y, x, x) ≈ t(y, x, y, x) ≈ t(x, y, y, x)

(SM 3)

On the other hand, if V realizes the strong Mal’cev condition (SM 3), then V
is congruence meet-semidistributive.

Proof. Let M be a left R-module which satisfies (SM 3). Then tM(x, y, z, u) =

αx+ βy + γz + δu, and the evaluation x = 0, y = y implies that α = β = γ =

δ = α+β, and hence α = 0. But idempotence implies that x = tM(x, x, x, x) =

4αx = 0x = 0, so M is trivial. Thus V is congruence meet-semidistributive,

according to Theorem 2.6, and the second statement is proved.

To prove the first statement, let V be a localy finite congruence meet-

semidistributive variety. Let W be the idempotent reduct of V, which is the

variety whose clone is the clone of idempotent term operations of V and whose

fundamental operations are the distinct elements of this clone. Since congru-

ence meet-semidistributivity can be characterized by an idempotent Mal’cev

condition, W is a locally finite, idempotent, congruence meet-semidistributive

variety. From idempotence follows that there exist term operations p and q in

the language of V which satisfy identities (SM 3) in V iff there exist such term

operations which satisfy (SM 3), except for idempotence, in W.

Let F be the two-generated free algebra in W, freely generated by x and

y. Let |F | = n. We define some subalgebras of F2 (i.e. compatible binary

relations with the operations of F):

E = SgF2

([
x

x

]
,

[
x

y

]
,

[
y

x

])
≤= SgF2

([
x

x

]
,

[
x

y

]
,

[
y

y

])
G = SgF2

([
x

x

]
,

[
x

y

]
,

[
y

x

]
,

[
y

y

])
We claim that the relation G is actually equal to the full product F × F .

To prove this, let r(x, y), s(x, y) ∈ F be arbitrary. Then

sF
2

(
rF

2

([
x

x

]
,

[
y

x

])
, rF

2

([
x

y

]
,

[
y

y

]))
=

sF
2

([
r(x, y)

x

]
,

[
r(x, y)

y

])
=

[
r(x, y)

s(x, y)

]
Now we define eleven more ternary compatible relations of F:
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R1 = SgF3

 y

x

x

 ,
 x

y

x

 ,
 x

x

y


R2 = SgF3

 x

x

x

 ,
 y

x

y

 ,
 x

y

y



R3 = SgF3

 x

x

x

 ,
 x

x

y

 ,
 x

y

x

 ,
 y

y

x


R4 = SgF3

 x

x

x

 ,
 x

x

y

 ,
 x

y

y

 ,
 y

y

y


R5 = SgF3

 x

x

x

 ,
 x

x

y

 ,
 x

y

x

 ,
 y

y

y


R6 = SgF3

 x

x

x

 ,
 x

y

y

 ,
 y

x

y

 ,
 y

y

y


R7 = SgF3

 x

x

x

 ,
 x

x

y

 ,
 x

y

y

 ,
 y

y

x


R8 = SgF3

 x

x

y

 ,
 x

y

x

 ,
 x

y

y

 ,
 y

x

x

 ,

while the final three relations are defined by R9 := {[p, q, r]T : [p, q]T ∈ E},
R10 := {[p, q, r]T : [p, q]T ∈ ≤} and R11 = F × F × F .

We note the following facts: The projection of R1 to any pair of coordinates

is E. The projection of R2 to the first two coordinates is E, while the other

two projections of R2 are equal to ≤. The projection of R3 to the first two

coordinates is ≤, while the other two projections of R3 are equal to E. The

projection of R4 to any pair of coordinates is ≤. The projection of R5 to the

last two coordinates is G, while the other two projections of R5 are equal to

≤. The projection of R6 to the first two coordinates is G, while the other

two projections of R6 are equal to ≤. The projection of R7 to the first two

coordinates is ≤, the projection of R7 to the first and the last coordinate is

E, while the projection of R7 to the last two coordinates is G. The projection

of R8 to the last two coordinates is G, while the projection of R8 to any other

pair of coordinates is E. Finally, all projections of R9, R10 and R11 to a pair

of coordinates are equal to G = F × F , except for the projection of R9 to the
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first two coordinates, which is equal to E and the projection of R10 to the

first two coordinates, which is equal to ≤. The last statement follows from the

subdirectness of the binary relations E and ≤.

We describe one more relation, the subpower U of arity 7:

U = SgF7
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Note that the projection of U to the first and any other coordinate, to

any pair among the second, third and fourth coordinate, and also to ith and

(i+ 3)rd coordinate for any 2 ≤ i ≤ 4, equals E. The projections of U to any

pair among the last three coordinates equals G, while its projection to any

other pair of coordinates equals ≤.

We describe an instance (V, F, C) of the constraint satisfaction problem

with the template A = 〈F ;E,≤, R, S,K,L,M1,M2, . . . ,M7, U〉. The set of

variables V has 2wn − 1 elements, where the sequence wn is defined at the be-

ginning of this section. We identify all variables in V with nonempty subsets

of wn, so V = {xA : ∅ 6= A ⊆ wn}. The binary constraints are as follows:

• Whenever A1 ( A2, then the constraint ρA1,A2 = ≤.

• Whenever A1 ∩A2 = ∅, then the constraint ρA1,A2
= E.

• Whenever A1 ∩ A2 6= ∅, but A1 and A2 are incomparable, then the con-

straint ρA1,A2
= G.

Now we need to make sure all possibilities are covered by our ternary con-

straints. The possible partial orders between three distinct nonempty subsets

are

• A1 ( A2 ( A3, in which case ρA1,A2,A3
= R4.

• A1 ( A2 and A1 ( A3, while A2 and A3 are incomparable, in which case

A2 ∩A3 ⊇ A1 6= ∅, so ρA1,A2,A3 = R5.

• A1 ( A3 and A2 ( A3, while A1 and A2 are incomparable, in which case

either ρA1,A2,A3 = R2 if A1 ∩A2 = ∅, or ρA1,A2,A3 = R6 if A1 ∩A2 6= ∅.
• A1 ( A2 and A3 is incomparable to either of the A1 and A2. Then the

three subcases are that A3∩A1 = A3∩A2 = ∅, in which case ρA1,A2,A3
=

R3, or that A3 ∩A1 = ∅ 6= A3 ∩A2, in which case ρA1,A2,A3
= R7, or that

that A3 ∩A1 6= ∅ 6= A3 ∩A2, in which case ρA1,A2,A3
= R10.

• If any pair among A1, A2, A3 are incomparable, then the constraint on

those three coordinates is R1, R8, R9, R11, or some permutation of their

coordinates, depending on the number of pairs among A1, A2, A3 with

nonempty intersection.
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Finally, we impose the constraint ρA1,A2,A3,A4,A5,A6,A7 = U whenever A1,

. . . , A7 are as in the conclusion of Lemma 3.1. From our analysis of the pro-

jections of various relations to two-element sets of coordinates and the way the

constraints were set up follows that whenever A ⊆ B, then the projection of

any constraint which contains {xA, xB} in its scope is ≤; whenever A∩B = ∅,
then the projection of any constraint which contains {xA, xB} in its scope is E

and whenever A ∩B 6= ∅, but A and B are incomparable, then the projection

of any constraint which contains {xA, xB} in its scope is G. This means that

the instance (V,A, C) satisfies the 2-consistency. Moreover, we have exhausted

all possibilities of three coordinates, as seen in the above discussion of cases, so

there is a ternary constraint on every three-element set of variables, and there-

fore the instance is (2, 3)-minimal. It must have a solution f by Theorem 2.5.

By Lemma 3.1, there exist sets A1, . . . , A7 which are as in the statement of

Lemma 3.1, and such that f(xAi
) = f(xAj

) for all 1 ≤ i < j ≤ 7. So, there

must exist some c ∈ F such that [c, c, c, c, c, c, c]T ∈ U . Therefore, there must

exist a W-term t(x, y, z, u) such that

tF
7
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.

This implies that

F |= t(x, x, x, y) ≈ t(x, x, y, x) ≈ t(x, y, x, x) ≈
t(y, x, x, x) ≈ t(y, y, x, x) ≈ t(y, x, y, x) ≈ t(x, y, y, x), and hence

W |= t(x, x, x, y) ≈ t(x, x, y, x) ≈ t(x, y, x, x) ≈
t(y, x, x, x) ≈ t(y, y, x, x) ≈ t(y, x, y, x) ≈ t(x, y, y, x),

and thus those same identities, together with idempotence of t, hold in V. �

It was proved in [8] that no idempotent strong Mal’cev condition in the

language with just one ternary symbol and any number of binary symbols

characterizes congruence meet-semidistributivity. So one would need one ope-

ration of arity at least 4 to do it, or at least two operations of arity at least 3

each. Therefore, the strong Mal’cev characterization proved above is optimal

in the sense of [10].

The condition (SM 4) defined below is the strong Mal’cev condition which

was isolated by [8] as the least with respect to the preorder � (i.e. syn-

tactically the weakest) in the class of all strong Mal’cev conditions in the

language consisting of two ternary operations, which fail in any nontrivial

module, but which are realized in the test varieties which were used in that

paper. Of course, those test varieties were all congruence meet-semidistributive



12 J. Jovanović, P. Marković, R. McKenzie, and M. Moore Algebra univers.

and locally finite. We prove that (SM 4) characterizes congruence meet-

semidistributivity in locally finite varieties, thus settling the question of num-

ber and arities needed for an optimal strong Mal’cev characterization of con-

gruence meet-semidistributivity.

Corollary 3.3. Let V be a variety. If V is locally finite and congruence meet-

semidistributive, then V realizes the strong Mal’cev condition (SM 4) given

by:
p(x, x, x) ≈ x ≈ q(x, x, x),

p(x, x, y) ≈ p(x, y, x) ≈ p(y, x, x) ≈ q(x, y, x) and

q(x, x, y) ≈ q(x, y, y).

(SM 4)

On the other hand, if V realizes the strong Mal’cev condition (SM 4), then V
is congruence meet-semidistributive.

Proof. If V is locally finite and congruence meet-semidistributive, then from

Theorem 3.2 follows that V realizes (SM 3). Then V realizes (SM 4) using

p = t(x, x, y, z) and q = t(x, y, z, z).

On the other hand, let us assume that p(x, y, z) = α1x + α2y + α3z,

q(x, y, z) = β1x+β2y+β3z satisfy identities (SM 4) in some left R-module M.

By evaluating x = 0, we get that α1 = α2 = α3 = β2 and that β2 + β3 = β3,

from which follows that β2 = 0. Thus α1 = α2 = α3 = 0. From idempotence

we get that x = p(x, x, x) = 0x+ 0x+ 0x = 0, so M = {0}. By Theorem 2.6,

it follows that V is congruence meet-semidistributive. �

4. Syntactically stronger and weaker strong Mal’cev characteriza-

tions

Besides (SM 3), we can prove another syntactically stronger character-

ization of locally finite congruence meet-semidistributive varieties than the

strong Mal’cev condition (SM 1). This characterization of congruence meet-

semidistributivity is not a Mal’cev condition. Instead, it claims that an infinite

set of identities in an infinite language must be realized in a variety, or, equiv-

alently, that all members of an infinite sequence of strong Mal’cev conditions

are realized in that variety. (Recall that a Mal’cev condition stipulates that

at least one of such a sequence holds in the variety.) We will call this kind of

condition a complete Mal’cev condition.

Proposition 4.1. Let V be a locally finite variety. V is congruence meet-

semidistributive iff there exists a binary term t(x, y) and for all arities n ≥ 3

terms wn(x1, . . . , xn) such that

• All wn are weak near-unanimity terms in V and

• For all n, V |= wn(x, x, . . . , x, y) ≈ t(x, y).
(CM1)

Proof. The strong Mal’cev condition (SM 1) is implied by the complete Mal’cev

condition (CM1), so any variety V which satisfies (CM1) must be congruence

meet-semidistributive.
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We will prove that for any n0 there exist t(x, y) such that (CM1) holds for

all 3 ≤ n ≤ n0. This will suffice, as the following argument shows: Let every

element of FV(x, y), represented by the term t(x, y), be assigned a number k

which is the least such that for every term operation p of arity k, if p is weak

near-unanimity in V, then V 6|= p(x, x, . . . , x, y) ≈ t(x, y). Our proof will show

that for every n0 there exists t such that t is not assigned any number in the

interval [3, n0]. Since FV(x, y) is finite, there must exist an element of FV(x, y)

to which no number is assigned. For every arity k ≥ 3, therefore, this element

is V-equal to the nearly unanimous evaluation of some weak near-unanimity

term of arity k.

Now we imitate the proof of Theorem 2.8 given in [13] with the following two

modifications: the set of variables is {x1, . . . , xn} where n > (n0−1)|FV(x, y)|
and we impose the appropriate constraints on all subsets of variables with

cardinality between 3 and n0. The proof is now identical to the one in [13]. �

Related to this proposition, we pose an open problem:

Problem 4.2. Can Proposition 4.1 be further strengthened to say that V |=
t(x, t(x, y)) ≈ t(x, y), (i. e. so that the weak near-unanimity terms wn are

special in the terminology of [17], Definition 4.6)? What about just realizations

of WNU(k) for all k ≥ 3, without assuming that all derived binary operations

are the same (remove the second item from (CM1)) but so that all weak near-

unanimity operations are special?

The reason to wonder about this is that the property of being special is

often quite useful in the calculations with weak near-unanimity. However, the

hitherto known way to prove existence of a special weak near-unanimity term

operation in the algebra which has a weak near-unanimity operation is by an

iteration which blows up the arity to a factoriel in the exponent. Thus, the

above would be quite helpful, if true. Though conceivable in the locally finite

case, it is not true in all varieties, as the following example shows:

Example 4.3. Let A = 〈ω; {sAn : n ≥ 2}〉, where the arity of sn is n and

sAn (x1, . . . , xn) =

{
x, if x1 = x2 = . . . = xn = x, or

max(x1, . . . , xn) + 1, else.

Proposition 4.4. The algebra A from Example 4.3 generates a congruence

meet-semidistributive variety, but has no special weak near-unanimity terms.

Proof. Let V = V(A). Obviously, all sn are weak near-unanimity operations

with V |= sn(x, x, . . . , x, y) ≈ s2(x, y). Moreover, V is congruence meet-

semidistributive (one can use Theorem 2.8 noting that the direction we need

holds in all varieties, or Theorem 3.2 and verify that s4 satisfies its require-

ments).

On the other hand, let t be any weak near-unanimity term of A reduced

with respect to idempotence, so any subterm of t of the form si(xj , xj , . . . , xj)

is replaced by xj until none remain. Assume that x1 occurs in t. Also, let τ be
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a nearly unanimous evaluation of the variables of t which evaluates all but x1

as 0, and x1 as k 6= 0. Consider the term tree of t. In the evaluation τ , each

node in the term tree is assigned a value equal to the value of the corresponding

subterm under τ . Inductively on the depth of a subterm p we can prove that

the value assigned to it is equal to k if p = x1, equal to the sum of k and the

maximal depth of any occurrence of x1 if x1 occurs in p but p 6= x1, and equal

to 0 otherwise. By the way, the depth of an occurrence of a variable in a term

tree is defined as the length (number of covers) of the maximal chain from the

root node to the leaf node corresponding to the occurrence, e.g. the depth of

x in the term x equal to zero.

Now t(1, 0, 0, . . . , 0) = d + 1, where d is the maximal depth among the

occurrences of x1 in t (since t is weak near-unanimity so t 6= x1). Therefore,

d ≥ 1. On the other hand, t(t(1, 0, 0, . . . , 0), 0, 0, . . . , 0) = 2d + 1 6= d + 1 =

t(1, 0, 0, . . . , 0), so t is not special. �

So, V is a counterexample to Problem 4.2 which is not locally finite. For

this reason, we restricted the scope of Problem 4.2 to locally finite varieties.

Another possible improvement to strong Mal’cev characterizations of locally

finite congruence meet-semidistributive varieties we proved so far would be in

a reduction of the number of equations needed. We prove first that it is im-

possible to find such a strong Mal’cev characterization with just idempotence

and one more linear equation (thus we may assume that the language has only

one operation, too, as applying two distinct operations on the two sides of the

equation obviously characterizes nothing):

Theorem 4.5. Any strong Mal’cev condition in the language with one op-

eration f with arity n which consists of idempotence plus one other linear

equation and which is realized in a nontrivial semilattice, can also be realized

in a nontrivial module. The module may even be assumed to be finite.

Proof. Let the strong Mal’cev condition in question be

f(x, x, . . . , x) ≈ x

f(y1, y2, . . . , yn) ≈ f(z1, z2, . . . , zn),
(1)

where all yi and all zj are in the set {x1, x2, . . . , xm}. First of all, we prove

that the statement will hold iff it holds under the additional assumption that

the identities are balanced, i. e. that {y1, y2, . . . , yn} = {z1, z2, . . . , zn} =

{x1, x2, . . . , xm}.
Assume that yt /∈ {z1, . . . , zn}. If J ⊆ {1, . . . , n}, denote by πJ(y1, . . . , yn)

the tuple of length |J | consisting of all yi such that i ∈ J listed in the in-

creasing order of indices. The Mal’cev condition (1) is realized by a nontrivial

semilattice iff the condition

g(x, x, . . . , x) ≈ x

g(πJ(y1, y2, . . . , yn)) ≈ g(πJ(z1, z2, . . . , zn))
(2)
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is realized by a nontrivial semilattice, where J = {i : 1 ≤ i ≤ n ∧ yi 6= yt}
and the arity of the symbol g is |J |. That is because any interpretation of f

in a nontrivial semilattice S must be a meet of variables which are all in J

(otherwise the evaluation of yj as a, and all other variables as b such that a < b

would falsify the Mal’cev condition (1)). On the other hand, any algebra in

which the Mal’cev condition (2) is realized must realize the original condition

(1), by just adding the new dummy variables.

To summarize, if we assume the following implication:

if the condition (2) is realized in a nontrivial semilattice, then (2) is realized

in a nontrivial module,

then we get the implication

if the condition (1) is realized in a nontrivial semilattice, then (1) is realized

in a nontrivial module.

Proof: S realizes (1) ⇒ S realizes (2) ⇒ a module realizes (2) ⇒ a module

realizes (1). Thus we prune off one after another the variables which occur

only on one side. Inductively, we may assume without loss of generality that

the equations in condition (1) are balanced.

Next we prove that any balanced condition of the form (1) is realized in

the vector space of rational numbers Q viewed as a space over themselves.

If there is any i such that yi = zi, then just make the interpretation as the

ith projection, and this will satisfy the condition (1) in any algebra. Any

interpretation fQ is of the form f(u1, u2, . . . , un) =
n∑

i=1

αiui for some αi ∈ Q.

For any i such that 1 ≤ i ≤ n, denote by Ii = {j : 1 ≤ j ≤ n ∧ yj = xi} and

Ji = {j : 1 ≤ j ≤ n ∧ zj = xi}.
Claim 1. The condition (1) is realized in an R-module M iff the system

of equations

n∑
i=1

αi = 1 together with equations∑
j∈Ii

αj =
∑
j∈Ji

αj for each 1 ≤ i ≤ m
(3)

has a solution in R (here αi are viewed as variables). In one direction by

evaluating all xi as x in (1) from idempotence we get the first equations of

(3), while the evaluation of xi as x and of all other variables xk as 0 implies

the equation
∑
j∈Ii

αj =
∑
j∈Ji

αj . On the other hand, assume that the system

(3) has a solution 〈a1, . . . , an〉. Interpret fM(u1, . . . , un) =
n∑

i=1

aiui. Then
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fQ(x, . . . , x) =
n∑

i=1

aix = 1x = x. Moreover,

fM(y1, . . . , yn) =

m∑
i=1

∑
j∈Ii

αj

xi =

m∑
i=1

∑
j∈Ji

αj

xi = fM(z1, . . . , zn).

It remains to show that the system (3) has a solution in Q no matter which

partitions {Ii : 1 ≤ i ≤ m} and {Ji : 1 ≤ i ≤ m} the Mal’cev condition (1)

imposes. About those partitions, the assumption that yi 6= zi for all i reflects

as the property that Ii ∩ Ji = ∅ for all i, and this is the only property which

we will assume.

We convert the system (3) into the system

n∑
i=1

αi = 1 and∑
j∈Ii

αj −
∑
j∈Ji

αj = 0 for each 1 ≤ i ≤ m
(4)

Let the matrix M of this system (of dimensions m+1×n) have rank r. Denote

by M1 the matrix obtained from M by deleting the first row. M consists of

entries which are 0, 1 or −1, and each column has one 1 in the top row, exactly

one more 1 and one −1 and the other entries are zeros. Each row has at least

one 1 and, unless it is the first row which consists of all 1s it must also have

at least one −1 as a consequence of (1) having balanced identities.

The system (4) will have a solution unless the augmented matrix of the

system has rank r + 1. This will occur iff the column of free coeficients and

the first row are used in constructing the minor of order r+ 1 which is regular

(since all entries in the column of free coefficients are zeros except for the first

one). Computing the determinant of this minor by the last column yields that

the augmented matrix of the system has rank r+1 iff there is a minor of order

r of the matrix M1 which is regular. Therefore, the system (4) has no solutions

in some vector space iff the first row vector of M (consisting of all entries 1)

is in the linear span of all other row vectors of M .

Let the row vectors of M1 be b1, . . . ,bm, let 1 be the row consisting only

of 1s, and let 1 =
m∑
i=1

qibi. If we restrict our attention initially to Q, we may

select the value qk such that |qk| is maximal. If qk > 0, we know that for some

1 ≤ j ≤ m, bk(j) = −1. From the way matrix M looks like (and since bi are

its rows which are not the top one) we know that there is precisely one l such

that bl(j) = 1 and all other rows bi(j) = 0 whenever i 6= k and i 6= l. So we

get that

1 = 1(j) =

m∑
i=1

qibi(j) = ql − qk.

This implies that ql > qk > 0 which contradicts the maximality of |qk|. The

case when qk < 0 is dealt with analogously, we just need to select a j such

that bk(j) = 1 and we will get that ql < qk < 0, a contradiction again.
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So we have proved that the Mal’cev condition (1) is realized in Q whenever

(1) is realized in a nontrivial semilattice. We proceed to prove that it is also

realized in Zp viewed as a vector space over itself for a suitably selected p.

The fact that (1) is realized in Q implies that the system (4) has a solution

q1, . . . , qn in Q. Let k be the positive integer such that all numbers ci = kqi
are integers. Then the system

n∑
i=1

αi = k and∑
j∈Ii

αj −
∑
j∈Ji

αj = 0 for each 1 ≤ i ≤ m
(5)

has the solution (c1, c2, . . . , cn) in the ring of integers. Select a prime number

p which is relatively prime to k, and for all i, let di be the element of Zp which

is congruent to ci modulo p. Let l ∈ Zp be such that lk is congruent to 1

modulo p. Then by multiplying all equations of the system (5) by l in the field

Zp we get that the system (4), equivalently, the system (3), has the solution

(ld1, ld2, . . . , ldn) in Zp. So, Claim 1 implies that (1) is realized in Zp. �

Corollary 4.6. There exists no idempotent linear strong Mal’cev characteriza-

tion of locally finite congruence meet-semidistributive varieties in the language

with only one operation and one equation other than idempotence.

Proof. It follows from [7], Theorem 9.10, (2)⇔ (5) and Theorem 4.5. �

We are not able to provide any strong Malcev characterization of congruence

meet-semidistributive locally finite varieties in the language of a single opera-

tion, with idempotence and two more equations. However, a computer search

has eliminated all but two conditions with one operation of arity 4 and the

two equations having a common term (i. e. of the form f(x) ≈ f(y) ≈ f(z),

where x, y, z are some 4-tuples):

t(x, x, x, x) ≈ x

t(x, x, y, z) ≈ t(y, z, y, x) ≈ t(x, z, z, y)
(SM 5)

t(x, x, x, x) ≈ x

t(x, x, y, z) ≈ t(y, x, z, x) ≈ t(y, z, x, y)
(SM 6)

Note that both of these conditions are syntactically stronger than (SM 3),

i. e. (SM 3) � (SM 5) and (SM 3) � (SM 6). Thus, it would be very desirable

that one of them characterizes locally finite congruence meet-semidistributive

varieties, as this would constitute the strongest known strong Mal’cev charac-

terization.

In further efforts using a computer search, we found that for all strong

Mal’cev conditions in the language of one operation of arity at most 7 and

which consist of idempotence and two more equations, all of which use at
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most three distinct variables, if that strong Mal’cev condition implies con-

gruence meet-semidistributivity, then it either fails in some congruence meet-

semidistributive test-algebra, or it is equivalent to (SM 5) or to (SM 6). We

leave thus an open problem:

Problem 4.7. Does every locally finite congruence meet-semidistributive va-

riety V realize the strong Mal’cev condition (SM 5)? What about (SM 6)?

Now we turn to syntactically weaker characterizations. If one is to try to use

a computer search to find out whether some locally finite variety is congruence

meet-semidistributive, the condition (SM 4) is most useful, as it only requires

the computation of the 3-generated free algebra, or the appropriate subalgebra

of the third power of the 2-generated free algebra. It is, however, sometimes

desirable (e.g. when trying to prove that the locally finite variety is congruence

meet-semidistributive, but not by a computer) to find a characterization which

is as weak as possible. The conditions (SM 2) and (SM 4) are among the ones

with minimal syntactic strength which we are aware of. A sequence {Σk : k ≥
3} of strong Mal’cev characterizations of congruence meet-semidistributivity

in locally finite varieties can be defined by changing the arities of the weak

near-unanimity terms in (SM 1) to k and k+ 1, respectively. This sequence is

of decreasing syntactic strength, as Σk+l is realized in the variety Mod(Σk) by

adding l dummy variables to the two weak near-unanimity operations in the

definition of Σk. However, these are not very useful in practice, syntactically

weak as they may be. Once the arity gets large, the problem of finding proofs

of existence, whether by computer or by hand, gets technically harder.

So, how weak are these syntactically weak Mal’cev characterizations? We

can compare them with other Mal’cev properties which are stronger than

congruence meet-semidistributivity. One obvious candidate would be congru-

ence distributivity. We are able to prove that (SM 4) � CD(4) and that

(SM 1) � CD(4) (thus also (SM 2) � CD(4), since (SM 2) � (SM 1)):

Proposition 4.8. Let V be a variety which realizes CD(4). Then there exist

terms p(x, y, z), q(x, y, z) and w(x, y, z, u) such that p and q are a realization

of the strong Mal’cev condition (SM 4) in V, while p and w are a realization

of the strong Mal’cev condition (SM 1) in V.

Proof. Following [17], we introduce the representation of tuples with words,

so for instance aibjcak represents the (i+ j + k + 1)-tuple that has the value

a in the first i coordinates, value b in the next j coordinates, value c in the

i+ j + 1st coordinate and again a in the final k coordinates.

Let W be the idempotent reduct of V, as defined at the beginning of the

proof of Theorem 3.2. We denote by F = FW(x, y), the W-free algebra freely

generated by x and y. We define the following subalgebras of powers of F:

• G = SgF3

(x2y, xyx, yx2),

• H = SgF3

(x3, yxy, xy2) and

• K = SgF4

(x3y, x2yx, xyx2, yx3).
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We want to prove that there was some c ∈ F such that c3 ∈ G∩H and that

c4 ∈ K. This would suffice, since there would exist terms p(x, y, z), q(x, y, z)

and t(x, y, z, u) such that pF
3

(x2y, xyx, yx2) = c3 = qF
3

(x3, yxy, xy2) and

that wF4

(x3y, x2yx, xyx2, yx3) = c4. This implies that the desired equations,

except for idempotence, hold in F when we compute the operations pF
3

, qF
3

and wF4

coordinatewise. As F is the free algebra, and the equalities hold

when the terms are applied to the tuples of free generators, this implies that

all desired identities hold in W. Idempotence of terms p, q and w in V (and

in W, as well) follows from the definition of W as the idempotent reduct of V.

Note that G and K are subalgebras of powers of F which are invariant under

all permutations of coordinates (totally symetric subpowers), as explained in

Definition 4.2 of [17], so if we prove that, say, abc ∈ G, this will imply that

any permutation of the word abc is also in G, and similarly in the case of K.

Now we define three new elements of F : x1 := dF1 (x, x, y) = dF2 (x, x, y),

y1 := dF2 (y, x1, x1) = dF3 (y, x1, x1) and y2 := dF2 (y1, x1, x1) = dF3 (y1, x1, x1).

We will prove that c = y2 satisfies the requirements of the first paragraph.

First we prove that y3
2 ∈ G. Note that G is totally symmetric which we will

repeatedly use without mentioning it. Also recall that terms apply coordinate-

wise like this: t(abc, def, ghi) = (t(a, d, g), t(b, e, h), t(c, f, i)).

yx1x = dG1 (yxx, xxy, xyx),

yx1x1 = dG1 (yxx1, xxy, xyx1),

y1x1x = dG2 (yxx, x1xy, x1yx),

y1x1x1 = dG2 (yxx1, x1xy, x1yx1),

y2x1x1 = dG2 (y1xx1, x1xy, x1yx1),

y1y2x1 = dG3 (yxx1, x1xy, x1y2x1),

y2y2x1 = dG3 (y1xx1, x1xy, x1y2x1),

y2y2y2 = dG3 (y1x1y2, x1x1y, x1y2y2).

Next, we prove that y3
2 ∈ H:

x1xx = dH1 (xyy, xxx, yxy),

x1yy = dH1 (xyy, xxx, yxy),

y1xx = dH3 (yxy, x1yy, x1xx),

y1yy = dH3 (yxy, x1xx, x1yy).

Now we let t be a binary term such that y2 = tF(x, y). Then

x1y2y2 = tH(x1xx, x1yy),

y1y2y2 = tH(y1xx, y1yy),

y2y2y2 = dG2 (y1y2y2, x1y2y2, x1y2y2).
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Finally, we prove that y4
2 ∈ K:

yx1x
2 = dK1 (yx3, x3y, xyx2),

yx2
1x = dK1 (yxx1x, x

3y, xyx1x),

yx3
1 = dK1 (yxx2

1, x
3y, xyx2

1),

y1x
2
1x = dK2 (yxx1x, x1x

2y, x1yx1x),

y1x
3
1 = dK2 (yxx2

1, x1x
2y, x1yx

2
1),

y2x
3
1 = dK2 (y1xx

2
1, x1xx1y, x1yx

2
1),

y2
2x

2
1 = dK3 (y1x

3
1, x

3
1y, x1y2x

2
1),

y3
2x1 = dK3 (y1x

3
1, x

3
1y, x1y

2
2x1),

y4
2 = dK3 (y1x

2
1y2, x

3
1y, x1y

3
2).

�

The following problem is inspired by Proposition 4.8. It seems to be difficult.

Problem 4.9. (1) Does every congruence distributive variety V realize the

strong Mal’cev condition (SM 4)?

(2) Does every congruence distributive variety V realize the strong Mal’cev

condition (SM 1)?
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